

 FP-International Journal of Computer Science Research (IJCSR)

 Volume 2, Issue 2, Pages 83-87, June 2015

83

Techniques on Prioritization of Software Testing: A

Review

ABSTRACT
Test case prioritization technique includes test cases for

completion in an order that attempts to increase their

effectiveness, efficiency at meeting some requirements.

Various goals are possible; one necessitate rate of fault

detection- a measure of how quickly detected faults

within the testing process. An improved rate of fault

detection during testing process can give faster

outcomes on the system under test and software

engineers begin correcting faults earlier. One

application of prioritization techniques involves

regression testing- the retesting of software changes,

modifications; In this frame of references, prioritization

techniques can take advantage of information collected

about the previous completion of test cases to obtain

test case orderings. Test Cases are treated as one of the

most favorable part of software testing process. They

are executive for the validation of the software under

look over. Test suites are used to test modification in

the coding phase during regression testing. In number

of cases, the test suites are so large that executing all

tests for every coding phase modification is

incongruous. Testers need to prioritize the test suite so

that most effective test cases are executed first. This can

result in increasing the effectiveness, efficiency of

testing and saving time and decreasing cost. In this

paper, we introduce a new algorithm for test case

prioritization that is based on the code coverage of the

test cases.

Keywords

Test case prioritization, fault detection, regression

testing

1. INTRODUCTION

Software testing is one of the major and primary

techniques or achieving reliable software. Software

testing is done to detect the error, which occur software

failure. However, software testing is a time taking and

expensive work [1], [2]. Software modifications many

times during development and maintenance phase.

Modification are done for several reasons, such as

adding new application, platform, correcting some

bugs. After modifications have been made, regression

tests are applied to the rectify parts of the software.

These modified parts have not affected the quality of

the other parts of software. According to Rothermel et

al., [3], “test suites can increase so large that it is cost

expenditure

to execute each test case for every new source code

modification”. In these type of circumstances,

Developers/testers are required to prioritize the test

suite so that test cases that are susceptible to find

undetected errors are run in the inception. Also the test

cases that cover more part of the code may be

completion first. Regression test selection and

prioritization techniques effort to preserve the time and

decrease the overall cost of regression testing. These

techniques select and run only that subset of the test

cases from existing test suite which is associated to the

modified part of the code.

According to the IEEE Standard 1219-1998 [4],

“regression testing can be associate in several modules

such as unit, integration or system level testing”. Most

existing regression testing techniques concentrate on

unit testing. Some of the techniques applied on all

modules of testing [5, 6]. Regression testing is

performed after justifying of modification or new

functionality. Justifying that the errors are fixed and the

newly added features have not occurred in problem in

on-time working version of software. Testers perform

functional testing when new build is available for

justification. The determined of this test is to verify the

changes made in the existing functionality and newly

added functionality.

Test case prioritization techniques could be of

advantage to growing the efficiencies of test suites in

practice. Test case prioritization is a technique helps to

grow the fault detection. In an empirical evaluation of

regression test suite prioritization technique ordering

was measured using an evaluation metric called APFD

(Average Percentage Faults Detected) and PTR

(Problem Tracking Report).

 A software bugs refers to a detect in a system. A bugs

is disagreement between the perceive performance of a

system and it’s individualize performance. A software

failure creates when the transfer product diverge from

correct service and perform unexpected behavior from

Pratibha
Department of Computer Science and Engineering

Chandigarh University, Mohali, Punjab, India

pratibhathakur3@gmail.com

Isha Sharma
Department of Computer Science and Engineering

Chandigarh University, Mohali, Punjab, India

ishasharma211@gmail.com

 FP-International Journal of Computer Science Research (IJCSR)

 Volume 2, Issue 2, Pages 83-87, June 2015

84

user requirements. A software fault or error may not

necessarily cause a software failure. Fault detection is

apprehending that a problem has created, even if you

don't know the reason. Faults may be detected by a

variety of quantitative or qualitative approaches. This

includes many of the multivariable, model-based

approaches. Fault analysis is investigating one or more

root causes of problems to the point where corrective

action can be taken. This is also referred to as “fault

isolation”, especially when need to show the

differentiation from fault detection. A "fault" or

"problem does not have to be the result of a complete

failure of a software product. In a process plant, root

causes of non-optimal operation might be hardware

failures but problems might also be caused by poor

choice of operating targets, poor raw material quality or

human error.

The following are several classes of software faults:-

Syntactic faults: interface faults and parameter faults

called as syntactic faults.
a) Semantic faults: conflicting behavior and

erroneous results called as semantic faults.

b) Service faults: QoS faults, SLA (Service Level

Agreement) associated faults, and real-time

vibrations are called service faults.

c) Communication / interaction faults: time out and

service inapproachable is called communication

or interaction faults.

d) Exemption: I/O related exemption and security-

related exemption are called exemptions faults.

2. APPROACHES OF FAULT

DETECTION

There are several approaches to find and isolate faults.

Because each approach has their benefits and failures,

topmost applications mix multiple approaches. We

prominence some of the key differentiating factors

between the different techniques.

Model based reasoning: When models of the observed

system are used as a basis for fault detection and

diagnosis, this is often referred to as "model based

reasoning”. One of the major differences in approaches

to fault detection & diagnosis is whether or not

explicate models are used, and what type of models are

used.

Fault signatures, pattern recognition and classifiers:

Pattern recognition directly uses the observed sign of a

problem and compares them to a set of known sign for

each possible problem. The “pattern”, or “fault

signature” can be represent as a vector (1 dimensional

array) of symptoms for each defined fault.

Neural networks:-Neural networks are nonlinear,

multivariable models built from a set of input/output

data. They can be used as event detectors to detect

events and trends. They also used as demonstrative

models in model-based reasoning, or directly used as

categories for identify fault signatures.

Event-oriented fault detection, diagnosis and

correlation:-An event denotes a change of state of a

monitored object. Alarms are examples of events.

Diagnostics involving events can be significantly

different than diagnostics including a fixed set of

variables.

Passive system monitoring vs. active testing:-In the case

of online monitoring systems, different diagnostic

techniques assume routine scanning of each variable of

interest. But many times, it is preferable to request non-

routine tests.

Rule-based approaches and implementations:-Rule-

based systems in most cases just implement other

approaches discussed above, more as a program control

mechanism than a different diagnostic technique.

Hybrid approaches:-Pattern recognition by itself does

not require a model. However, input for construction of

the signatures for the known failures may be based on

models; for instance, as residuals from models of

normal behavior. This general technique applies to

static or dynamic models. For dynamic models, the

patterns can be based on predicted measurement values

vs. observed values in a Kalman filter, for example

Smart signal offers products based on an empirical

process model of normal operation used for fault

detection, combined with other techniques for fault

isolation. Pattern recognition can also be combined with

models of exceptional behavior. For instance, in the

case of the SMARTS In Charge product, the modeling

was in terms of a fault propagation model (qualitative

cause/effect model of abnormal behavior). But as part

of the development process, this model was then used to

automatically construct fault signatures - a form of

compiled knowledge. At run time, diagnosis was based

on matching observed data to the nearest fault

signature. So the product at run time had the

characteristics of a pattern matching solution. So, the

overall methodology is often a combination of pattern

recognition with a model-based method. Some tools

such as GDA are flexible enough to support multiple

approaches to fault detection and diagnosis, and also

support the upfront filtering and event generation as

well. One conclusion was that most applications

required a mix of techniques for success [1].

 FP-International Journal of Computer Science Research (IJCSR)

 Volume 2, Issue 2, Pages 83-87, June 2015

85

Process history based

Fig 1: Architecture diagram strategy for detection of

software faults

To detect the software faults, which have been

generated during the development process, two

different approaches may be applied:-

 1. Static approach

 2. Dynamic approach

1. Static approach:- Techniques guided by a static

approach do not depend upon that the system is

complied and may be applied at all stages of the

development process. These techniques may be applied

as formal reviews like investigation or automatic

analyses of the code of a system or associated

documents.

2. Dynamic approach:- Techniques guided by

dynamic approach ensure that a program is

operationally correct which mean that the system is

complied with test data. On the other hand, testing is

only possible when a prototype or an executable version

of a program is available. Both inspections and testing

are activities contributing to validation and verification.

3. SOFTWARE BASED FAULT

DETECTION TECHNIQUE

3.1 Algorithm Based Fault Tolerance

(ABFT)

ABFT is used for detecting, locating, and correcting

faults with a software procedure. It exploits the

structure of numerical operations. This approach is

effective but lacks of generality. It is well suited for

applications using regular structures, and therefore it is

used for a limited set of problems.

1. Assertions:- Assertions or the logic statements

inserted at several points in the program reflect

undeviating relationships between the variables of the

program and they often lead to many asseveration

problems as assertions are not transparent to a

programmer and their operatives depends on the nature

of an application and on a programmer's ability.

2. Control Flow Checking (CFC):- The basic

task of CFC is to partition an application program in

basic blocks or the branch-free parts of code. A

deterministic signature (or number) is assigned to each

block and faults are detected by comparing the run-time

signature with a pre-computed one. In most CFC

techniques one of the major problems is to tune the test

granularity that should be used.

3. Procedure Duplication (PD):- The

programmer decides to duplicate the most critical

procedures and to compare the obtained results on

executing the procedures on two different processors.

This approach requires a programmer to decide which

procedures to be duplicated and to introduce proper

checking on the results. These code modifications are

done manually and might introduce bug.

 4. Error Detection by Duplicated

Instructions (EDDI):- Computation results from

master and shadow instructions are compared before

writing to memory. Upon mismatch, the program jumps

to a bug handler that will cause the program to restart.

EDDI has high bug coverage at the cost of performance

penalty due to time redundancy as introduced into the

system. Since we use general purpose registers as

shadow registers, more register spilling occurs with

EDDI. More spilling causes more performance

overhead since it increases the number of memory

operations.

5. Periodic Memory Scrubbing: - This approach

relies on periodic reloading of code on main memory

from an immutable memory. This is effective for

protecting the code segment of Operating system and

application programs. Performance penalty is due to

repetitive memory reading.

6. Masking Redundancy: - This approach means

running an application in the presence of faults. Few

processors are used to run the same program and vote to

identify errors in any single processor. Errors can be

masked from application software. No software

rollbacks are required to fix errors.

7. Reconfiguration: - This means removing failed

modules from the system. When failure occurs in a

module, its effects on the remaining portion of the

Qualitative Quantitative

Expert
system

QTA STATISTICA

L

NEURAL
NETWORK

PCA/PLS STATISTICAL
CLASSIFIER

 FP-International Journal of Computer Science Research (IJCSR)

 Volume 2, Issue 2, Pages 83-87, June 2015

86

system is isolated. A large number of functional

modules are used, which are switched automatically to

replace a failing module.

8. Replication: - This ensures reliability but is

expensive in terms of hardware or runtime cost. The

idea is to take a majority vote on a calculation

replicated N times. Its software solution requires each

processor to run N copies of surrounding computations

and then vote on the result. This slows down the

computation by at least a factor of N.

9. Restore Architecture: - Transient errors or soft

errors are detected through time excessive in the restore

architecture. The novelty of the restore architecture is

the use of transient error symptoms, such as, memory

protection violation and incorrect control flow etc. The

tendency for these symptoms to occur quickly after a

transient, coupled with a check pointing implementation

in hardware to restore clean architectural state, enables

a cost effective soft error detection and recovery

solution.

10. Dual Modular Redundancy (DMR) &

Backward-Error Recovery (BER) &

Checkpoint: - Error is detected through differences

in execution across a dual modular redundant (DMR)

processor pair. DMR is a backward-error.

4. PRIORITIZED TEST SUIT

EFFECTIVENESS

4.1 Average Percentage of Fault Detections

(APFD) Metrics

To quantify the goal of increasing a subset of the test

suite's rate of fault detection, we use a metric called

APFD developed by Elbaum et al.[8] that measures the

rate of fault detection per percentage of test suite

execution. The APFD is calculated by taking the

weighted average of the percentage of faults detected

during the execution of the test suite. APFD values

range from 0 to 100; higher values imply faster (better)

fault detection rates. APFD can be calculated as

follows:

Where n is the no. of test cases and m be the no. of

faults.

(Tf1,….,Tfm) are the position of first test T that

exposes the fault.

5. REGRESSION TESTING

TECHNIQUES

There are number of available regression testing

techniques. Here we are representing all these

techniques in basic 3 categories as defined.

1. Retest All: As the name suggest in this testing

technique we perform whole testing cycle again after

the inclusion of new code and component and related

test cases into it. Again the test cases will be generated,

sequence reset etc. This type of technique is not feasible

in most of time, as it requires much time and cost. But

in smaller software where a small change in code

impact on whole software at that time regression testing

is used.

2. Regression Test Selection: This approach is a

modification over the existing retest all approaches. In

this approach instead of testing all cases a selection on

the test cases is performed. To perform this selection a

test cases categorization is performed. According to this

rest table cases are separated from whole test cases such

as the requirement based testing is generally need not to

be performed again. The code based test cases and the

system based test cases are selected to perform the

testing process. In this technique instead of rerunning

the whole test suite, we select a part of test suite to

rerun if the cost of selecting a part of test suite is less

than the cost of running the tests that RTS allows us to

omit. RTS divides the existing test suite into (1)

Reusable test cases; (2) Re-testable test cases; (3)

Obsolete test cases.

3. Test Case Prioritization: All the test cases used

in a testing approach or the sequence are not alike. It

means each kind of test cases have there on values

called the basic prioritization of the test cases.

Generally the prioritization process is defined on the

bases of state space diagram of the cases. The test cases

that exist on initial stage of the test cases or the

development process have the lower priority and the

test cases that affect the whole system or tested

repeatedly over the whole process having the higher

priority. Besides this the prioritization process is further

divided in number of sub techniques to assign the

priorities.

a) The easiest type of assigning priorities is

the random prioritization but in most of the cases it

does perform the complete justification with the test

cases selection. Because of this such type of technique

is never recommended to generate the test cases.

b) Optimal ordering: In which the test cases are

prioritized to optimize rate of fault detection. As faults

are determined by respective test cases and we have

programs with known faults, so test cases can be

prioritized optimally. It is one of the dynamic

prioritization approach in which decision is affected

because of types of occurred faults and there frequency.

APFD=1-{(Tf1+Tf2+….+Tfm)/mn}+(1/2n)

 FP-International Journal of Computer Science Research (IJCSR)

 Volume 2, Issue 2, Pages 83-87, June 2015

87

c) Total statement coverage prioritization: in

which test cases are prioritized in terms of total number

of statements by sorting them in order of coverage

achieved. If test cases are having same number of

statements they can be ordered pseudo randomly.

d) Additional statement coverage

prioritization: which is similar to total coverage

prioritization, but depends upon feedback about

coverage attained to focus on statements not yet

covered. This technique greedily selects a test case that

has the greatest statement coverage and then iterates

until all statements are covered by at least one test case.

The moment all statements are covered the remaining

test cases undergo Additional statement coverage

prioritization by resetting all statements to “not

covered”.

Types of Testing:

1. Unit testing: It is performed on a single unit or

group of units that are somehow related to each other in

any manner. It is performed by the programmer itself

after the development of a unit or group of units. The

model used in this testing is “white box”.

2) Integration testing: It is performed on

combined components of product. As sometimes it

happens that components work correctly before they are

combined and produce errors when the combination of

components takes place. The model used in this testing

is “white box” and “black box”.

3) Functional testing: It is performed to check the

functionality of the system that whether the system is

performing its function what it is intended to perform.

The model used in it is “black box”.

4) System testing: It is performed on a complete or

full system also the software is put under different

environments. It can only be performed after the

complete implementation of the system. Stress testing,

performance testing and usability testing are performed

on it in order to check the system: under stress (load),

performance (speed and accuracy) and usability (user
friendliness) respectively. The model used in this

testing is “black box”.

5) Acceptance testing: In this type of testing

customer checks for output that whether the system is

able to meet his requirements. Also customer checks

whether the purpose of the system is resolved or not.

The model used in it is “black box”.

Regression (retest) testing: It is performed when

any module, unit, component or system is modified in

order to change the functionality or for some other

reasons. Regression testing ensures that any

modification done in specified components will not lead

to any discrepancy in the actual output of the system. It

also ensures that no other modules are being affected

due to performed modifications. In this first of all the

modules are tested which have been modifies after they

give correct results is done on the whole system It

maintains the quality of the system to many efforts are

required in this type of testing. Also cost associated

with this is high comparatively [9].

6. CONCLUSION

There are different methods and techniques used to

detect faults in software system but each technique has

some disadvantages. We mainly focus on the software

regression testing. There are different kind of regression

testing each type has unique functionality in software

system. We have reviewed a number of paper and

concluded there are many technique to prioritize the test

cases. But no one technique is gave effective results.

The technique gave higher priority to least important

test cases and lower priority to most important test

cases. Thus, to overcome these issues we will propose

an algorithm which will provide efficient and effective

results.

REFERENCES

[1] Dr. Velur Rajappa, Arun Biradar, Satanik Panda “Efficient

software test case generation Using Genetic algorithm based Graph
theory” International conference on emerging trends in Engineering

and Technology, pp. 298--303, IEEE (2008).

[2] Praveen Ranjan Srivastava and Tai-hoon Kim “ Application of

Genetic algorithm in software testing”, International Journal of

software Engineering and its Applications, vol.3, No.4, pp. 87--96
(2009).

[3] G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold,
“Prioritizing test cases for regression testing”, Software Engineering,

IEEE Transactions, vol. 27, no. 10, (2001), pp. 929-948.

[4] IEEE standard for software maintenance. IEEE Std 1219-1998, ix,

vol. 15, no. 19, (1998) October.

[5] A. P. Mathur, “Foundations of Software Testing: For VTU. (1st

ed.)”, Pearson Education India, (2010).

[6] M. Khoury, “Cost-Effective Regression Testing”, (2006).

[7] Greg Stanely and associates “A guide to fault detection and
diagnosis” , 2010-2013.

[8] S. Elbaum, A. Malishevsky, and G. Rothermel.(2000),
”Prioritizing test cases for regression testing”.

[9] Quart-ul-an-farooq, Mohammad Zohaib Z. Iqbal, Zafar I Malik
and Matthias Riebish, “A Model Based Regression Testing Approach

For Evolving Software Systems With Flexible Tool Support”.

